

# **BRASS ALLOY CW617N**

Forging brass in the form of rod and profile, intended for applications where an alloy with lower lead content than CW614N is needed.

The alloy has very good forge ability and good machinability.

## Composition

| CW617N | Cu             | Zn  | Pb       | Al     | Fe    | Ni    | Sn    | Other |
|--------|----------------|-----|----------|--------|-------|-------|-------|-------|
| Limits | 57.0-<br>59.0% | Rem | 1.6-2.5% | <0.05% | <0.3% | <0.3% | <0.3% | <0.2% |

#### Standardization

The alloy is, according to international standards, equivalent in composition to

| $\bigcirc M \neq 1.7M$ | C1170 10000 |
|------------------------|-------------|
| CW617N                 | l CuZn40Pb2 |

SS-EN 12164, rod for free machining purposes

SS-EN 12165, wrought and unwrought forging stock

SS-EN 12166, wire for general purposes

SS-EN 12167, profiles and rectangular bars for general purposes

## Structure type

 $(\alpha+\beta)$ -phase together with lead phase.

## **Application example**

Rod.

Hot forged details, particularly hot pressed with punches.

### Residual stress level

Rod must show no evidence of cracking after testing according to SS-ISO 6957 Copper alloys – "Ammonia test for determining resistance to stress corrosion". Moderate stress according to the standard must be applied.

### **Dezincification resistance**

The alloy CW617N is not dezincification resistant



## **Physical properties**

| Property                               | Value   | Unit              |
|----------------------------------------|---------|-------------------|
| Density                                | 8500    | kg/m <sup>3</sup> |
| Melting temperature                    | 875-890 | °C                |
| Heat capacity at 20°C                  | 0.38    | kJ/(kg°C)         |
| Resistivity at 20°C                    | 62      | nΩm               |
| Temperature coefficient for resistance | 0.0017  | °C                |
| at 20°C, 0-100°C                       |         |                   |
| Conductivity at 20°C                   | 15      | MS/m              |
|                                        | 28%     | IACS <sup>1</sup> |
| Thermal conductivity at 20°C           | 120     | W/m°C             |
| Thermal expansivity, 20-300°C          | 21*10-6 | °C                |
| Modulus of elasticity                  | 110     | GPa               |
| Modulus of shearing                    | 35      | GPa               |

<sup>1)</sup> IACS = International Annealed Copper Standard. 100% IACS is equivalent to a resistivity of 17.241 n $\Omega$ m and a conductivity of 58 MS/m.

#### Heat treatment

**Stress-relief annealing**. Temperature 330-350°C. Time 2-4 hours. Stress-relief annealing should be carried out after all cold working which gives high residual tensile stresses in the material. It may also be justified after machining. This eliminates the risk of stress corrosion cracking caused by internal stresses.

**Soft annealing.** Temperature 500-550°C. Time 1-2 hours.

# Workability

**Hot workability** is very good. Suitable temperature 650-775°C. The alloy is intended for hot forging. One should, when heating before forging, ensure that the temperature does not exceed the specified range and that time at elevated temperature is as short as possible. Otherwise, the material can have significant grain growth that can easily lead to cracks during forging. **Cold workability** in the hot worked and annealed condition is satisfactory. The workability decreases as hardness increases. For stress-relief annealing after cold working see Heat treatment.



## **Corrosion resistance**

Copper is a relatively noble metal. Copper and its alloys therefore show little tendency to react with the environment. As a result of this, the copper materials generally have good corrosion resistance. However, corrosion may occur under disadvantageous unfavorable conditions. The type of corrosion which may occur depends on both the environment and the composition of the alloy.

### The corrosion resistance of CW617N is

| Corrosion types                   | Corrosion resistance | Comment                                                                                                                                                                        |
|-----------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stress Corrosion<br>Cracking, SCC | Satisfactory         | This type of corrosion only occurs in the simultaneous presence of high stresses in the material and a corrosive medium containing ammonia and moisture. (See Heat treatment.) |
| Dezincification,<br>DZR           | Poor                 | This type of corrosion only occurs when the material is exposed to water or a moist atmosphere, preferentially at elevated temperature and at the presence of chlorides.       |
| Erosion corrosion                 | Quite good           |                                                                                                                                                                                |

## Machinability

The alloy is easy to machine. High surface quality is easy to achieve. The chips are short.

Tool and cutting data. Tungsten carbide according to ISO-group K 10.

| Cutting data    | Tungsten carbide            | High speed steel            |
|-----------------|-----------------------------|-----------------------------|
| Rake angle      | 2-6°                        | 0-3°                        |
| Back rake angle | 0°                          | 0°                          |
| Clearance angle | 4-6°                        | 0-6°                        |
| Cutting speed   | Approx. 300 m/min or faster | Approx. 150 m/min or faster |
| Cutting fluid   | Dry or cutting oil          | Emulsion or cutting oil     |

## Welding and brazing

The high lead content means that in welding, the material becomes hot brittle and the weld is porous. The following applies to the different welding methods:

| Welding method                      | Suitability                                                                               | Comment                                                                                                                                                                |
|-------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fuse welding and resistance welding | Poor                                                                                      | Cannot be carried out with good results.                                                                                                                               |
| Braze welding                       | Poor                                                                                      | Cannot be carried out with good results because of the minimal difference between the melting temperature of the base metal and the working temperature of the solder. |
| Brazing (hard soldering)            | Satisfactory, can be carried out with a silver solder and silver-phosphorus-copper solder | Difficult to carry out with a phosphorus-copper solder and cannot be carried out with satisfactory results with a brass solder (see Braze welding).                    |
| Soldering                           | Excellent                                                                                 | Very easy to carry out.                                                                                                                                                |



#### Surface treatment

**Mechanical surface treatment** such as grinding, brushing, blasting and polishing is carried out by conventional methods.

**Pickling** (non-oxidizing pickling) is suitably carried out with diluted sulphuric acid at room temperature.

**Pickling** to a metallically clean surface (oxidizing pickling) is suitably carried out in a pickling bath containing oxidants such as peroxide, nitric acid or dichromate. For pickling to a high gloss, baths containing nitric acid are mainly used.

**Chemical and electrolytic polishing** is easy to carry out with mixtures of concentrated acids, e.g. phosphoric acid, nitric acid and acetic acid.

**Polishing** is suitably carried out with commercial cleaning products for copper.

**Dark dyeing** is easy to carry out by wet chemical methods, dark sulphide or oxide layers being obtained.

**Varnishing** with clear varnish means that the appearance obtained after cleaning or dyeing, for example, is retained for a long time. Clear varnishes containing a discoloring inhibitor are available for demanding applications.

Metallization (metallic surface coating) is easy to carry out.

### **Mechanical properties**

CW617 N from Nordic Brass Gusum meets and exceeds the quality demands defined in the standards. To give an idea of the mechanical properties some empirical values, according to the material state "M" in the EN standard, are listed below. These values are to be considered as guideline values for the delivered material.

| Property                | Value | Unit |
|-------------------------|-------|------|
| Rm, Tensile strength    | >400  | MPa  |
| Rp02, Yield strength    | ~340  | MPa  |
| A5, Fracture elongation | >15   | %    |
| Brinell hardness        | ~120  | НВ   |